A New Sequence for the Synthesis of 3-(Poly)enoyltetramic Acids

Raymond C. F. Jones * and Mark Tankard Chemistry Department, Nottingham University, Nottingham NG7 2RD, UK

The synthesis of 3-(poly)enoyltetramic acids from 2,2,6-trimethyl-1,3-dioxen-4-one $via\ N$ -(3-oxo-4-alkenoyl)- α -amino-acids is described.

To extend our interest in the 3-acyltetramic acids 1^1 and encompass the polyenoyl subclass of metabolites, such as the highly toxic pigment erythroskyrine 2, we require methods for the assembly of polyenoyltetramic acids. A popular strategy has been chain extension of 3-acetyl $1 (R^3 = Me)^3$ and 3-phosphonacetyl $1 [R^3 = CH_2P(O)(OEt)_2]$ derivatives, but the acidic and highly polar enolic nature of the heterocycle make it advantageous to form the heterocycle after assembly of the polyenoyl chromophore. We report herein a simple

sequence to accomplish this goal using non-polar intermediates. 5.6

2,2,6-Trimethyl-1,3-dioxen-4-one ('acetone-diketene adduct' 3a) was converted via the chloride 3b into the 6-diethyl-phosphonomethyl derivative 3c [i, LiNPri2, THF, -70 °C; C2Cl6, -50 °C; 59%; ii, (EtO)2P(O)H, Bu'OK, DMF, 0 °C; 60%]. The anion derived from the phosphonate 3c was condensed with saturated and unsaturated aldehydes (Table 1) to give the (poly)enes 4a-e† [LiN(SiMe3)2, THF, -78 °C for 4a, c-e; BuLi, THF, 0 °C for 4b]. In an alternative but less generally useful approach, the phosphonium salt 3e^{4a} was prepared from 3a via the 6-bromomethyldioxenone 3d (i, LiNPri2, THF, -70 °C; BrCl2CCCl2Br, -55 °C; 78%; ii, Ph3P, C6H6, reflux; 93%)‡ and underwent Wittig reactions in moderate yield, e.g. with hexa-2,4-dienal (BuLi, THF) to generate 4d (30%). Direct deprotonation of 3a and aldol condensation with aldehydes was examined, but gave only limited success, especially in the dehydration step.8 Acid-

Table 1 Synthesis of 3-acyltetramic acids 6

Aldehyde	6-Alkenyldioxenone 3a or 4 (yield %)	β-Ketoamide 5 (yield %)	3-Acyltetramic acid 6 (yield %)
	3a	5a (73)	6a (65)
MeCHO	4a (61)	5b (69)	6b (45)
Me[CH ₂] ₄ CHO	4b (71)	` /	
(E)-MeCH=CHCHO	$4c(20)^a$	5c (83)	6c (65)
(E,E)-Me[CH=CH] ₂ CHC	` ,	5d (75)	6d (52)
(all-E)-Me[CH=CH] ₄ CH	` '	` /	` '

^a Isolated yield; difficulties in purification.

[†] All new compounds gave spectral data (IR, UV, NMR and MS) in accord with the assigned structure, and satisfactory combustion analysis or accurate mass measurement.

[‡] Attempts to prepare bromide 3d by radical bromination (*N*-bromosuccinimide, benzoyl peroxide, CCl₄, reflux), *cf.* ref. 4a, led to an inseparable mixture of 3a, 3d and the 6-dibromomethyl compound (1.5.1)

mediated thermolysis 9 of the 6-methyl **3a** and 6-alkenyl-dioxenones **4** with an α -amino ester afforded the corresponding β -ketoamides in good yield. Thus N-methyl-L-valine methyl

ester, prepared *in situ* from the hydrochloride salt (Et_3N, CH_2Cl_2) was reacted with dioxenones $\bf 3a$ and $\bf 4a$, $\bf c$, $\bf d$ [pyridinium toluene-p-sulphonate (1 mol equiv.), toluene; reflux 3-4 h] to generate the amides $\bf 5a-d$, respectively (Table 1). Finally, Dieckmann cyclisation of the β -ketoamides proceeded efficiently using potassium t-butoxide in t-butyl alcohol at 20 °C within 45 min * to afford the 3-acyltetramic acids $\bf 6a-d$ (Table 1).

We have thus demonstrated a mild methodology for accessing (poly)enoyltetramic acids that generates the polar heterocycle as a final step.

Acknowledgements

We thank SERC for a studentship (M. T.).

References

- 1 For leading references, see: R. C. F. Jones and J. M. Patience, J. Chem. Soc., Perkin Trans. 1, 1990, 2350; R. C. F. Jones, M. J. Begley, G. E. Peterson and S. Sumaria, J. Chem. Soc., Perkin Trans. 1, 1990, 1959.
- 2 R. C. F. Jones and M. Tankard, J. Chem. Soc., Chem. Commun., 1990, 765.
- 3 R. C. F. Jones and A. D. Bates, Tetrahedron Lett., 1987, 28, 1565.
- 4 (a) R. K. Boeckman and A. J. Thomas, J. Org. Chem., 1982, 47, 2823;
 (b) R. H. Schlessinger and G. R. Bebernitz, J. Org. Chem., 1985, 50, 1344;
 (c) P. DeShong, J. A. Cipollina and N. K. Lowmaster, J. Org. Chem., 1988, 53, 1356.
- 5 Cf. S. V. Ley, S. C. Smith and P. R. Woodward, Tetrahedron Lett., 1988, 29, 5829.
- 6 For application of this sequence to the synthesis of the macrocyclic enoyltetramic acid ikarugamycin, see: R. K. Boeckman, C. H. Weidner, R. B. Perni and J. J. Napier, J. Am. Chem. Soc., 1989, 111, 8036; L. A. Paquette, D. Macdonald, L. G. Anderson and J. Wright, J. Am. Chem. Soc., 1989, 111, 8037.
- 7 R. K. Boeckman, R. B. Perni, J. E. Macdonald and A. J. Thomas, Org. Synth., 1987, 66, 194.
- 8 Cf. Y. Noda and D. Seebach, Helv. Chim. Acta, 1987, 70, 2137.
- 9 R. J. Clemens and J. S. Witzeman, J. Am. Chem. Soc., 1989, 111, 2186.

Paper 0/04564K Received 10th October 1990 Accepted 23rd October 1990

^{*} Extended reaction times lead to racemisation, cf. ref. 5.